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The osmotic pressure second virial coefficients A 2 of linear, ring, regular star and regular comb 
homopolymers are studied in the Gaussian model including excluded-volume interactions. A perturbation 
theory scheme is used where the space dimensionality d is considered as a continuous variable and the final 
conclusions are based on calculations done at the critical dimensionality d = 4. For chains of intermediate 
molecular weight, a function F can be defined which depends on the various architectures. The second virial 
coefficients are smaller for larger values of F. In the case of linear and ring polymers of simple architecture, the 
F are pure numbers, whereas they depend on the specific characteristics in the cases of more complicated 
architectures. For star polymers, F is a function of the numberfof the branches and, in the case of combs, it 
depends both onfand on the ratio p of the molecular weight of a branch to that of the backbone. In the limit of 
large molecular weights, A2 becomes independent of the architecture and a closed form is proposed for it 
consistent with higher-order calculations. 

(Keywords: virial coefficient; lilie~r chains; rings; stars; combs) 

I N T R O D U C T I O N  

The osmotic pressure H of a polymer solution is a basic 
property l'z useful for the detection and characterization 
of the architecture of polymeric chains. In the virial 
expansion in powers of polymer concentration c 
(mass/volume), it can be written as 

(YI/RT) = (c/M) + A2 ¢2 +... (1) 

where T is the absolute temperature, R is the gas constant 
and M is the molecular weight of the polymer. A z is the 
second virial coefficient, and describes the average 
interactions between two polymeric chains 1-3. It is 
determined from measurements of the osmotic pressure at 
various concentrations in the limit of infinite dilution as 

A2 = lim d[H/(RTc)] 
c ~o dc 

and early studies have shown that it can take both positive 
and negative values depending on the temperature and 
the quality of the solvent. A regularity found in the limit of 
large molecular weights is that A2 depends on M in a 
power-law form 3-6: 

Z 2 ~ M-1' (2) 

where 7 is a characteristic exponent independent of the 
nature of the polymer and the solvent. For polymers of 
various architectures, though, like rings 7,s, stars 9"1° or 
combs L 1, A 2 is found to take values different from those of 
linear chains of the same molecular weight. 

The present work was undertaken for two reasons: first 
to explain the regularities observed, like the power-law 
dependence of A 2 on M, by describing the conditions 
under which equation (2) is valid; secondly to explain the 

differences observed for polymers of various architectures, 
thereby producing the quantitative dependence of A z on 
the characteristics of the various architectures. 

In the model to be used each chain consists of N 
segments and a specific configuration is defined if all the 
N + 1 position vectors {R~[i= 1,2 . . . . .  N + 1} of the ends of 
the segments are given. The probability Po{Ri} of such a 
configuration, for an ideal chain without excluded- 
volume interactions, is given in the Gaussian model as the 
product of N Gaussian functions, one for each segment 2. 
The position of the ith segment is determined by means of 
the position vectors of each beginning Rz and its end Ri+ 1 
so that Po{R~} can be written as: 

P o { R i  } = (d/2rtl2)Na/2ex (Ri_ Ri+l)2 (3) 

where I is the length of the segment, d is the dimensionality 
of the space and the summation runs over all successive 
position vectors in a way depending on the architecture of 
the chain. Since the end of a segment coincides with the 
beginning of each neighbour, the expression in (3) ensures 
the connectivity of the chain. This Gaussian model, 
though inadequate to describe quantitatively special 
effects in the limit of small chains 6'12, has been applied 
with considerable success in the study of larger chains 2'1°. 
For the study of a real chain the two-body interactions 
from segments far apart  along the contour length of the 
chain but capable of coming close in space have to be 
included. The form of these interactions for two chain 
points at position vectors R~ and R~ is approximated with 
a d-dimensional delta function pseudopotential 
2U'fd(Ri-- R j) which takes nonzero values only when Ri is 
close to Rj. The intensity of the interaction is proportional 
to the excluded-volume parameter u', which can be 
written in terms of the mean average potential V(r) 
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between the two chain points at positions separated by the 
vectorr  as 

u' = ½fd r..{ 1 - exp[ - V(r)/kT] ) 

The probability of a specific configuration can then be 
written as 

P{ R,} = Po{ R,}exp( - u'~I Ni l6a(R,- R fl) 
i = 1  j = l  
t ~ j  t ~ j  

(4) 

where the factor ½ necessary for the proper counting of 
distinguishable pairs is absorbed in the definiition of u' for 
simplicity. The second virial coefficient A 2 is a property of 
two chains and the probability of the configuration of two 
chains has to be used. For a configuration where the ends 
of the segments of the two chains are at the position 
vectors {R/} and {R'i} respectively, the probability is given 
by: 

// N + I N + I  

P{R,,R',} =Po{R,,R',}exp[-u' Z ~=, 6d(R-,--RJ) 
\ i = l  j 

l # j  t # j  

N + I N + I  N + I N + I  \ 

-u 'Z  Z 6'(8;--R))-2u Z E 6d(R-,--R))) 
i = 1  j = l  i = 1  j = l  
~#j t # j  

(5) 

and includes both intra- and interchain interactions, 
considered to be of the same intensity. P0{R~,R)} stands 
for the probability of the two ideal noninteracting chains. 

When the number of segments N of the chain is large, 
the local structure of the chain is irrelevant for the 
description of its macroscopic properties. In this limit 
chains with discrete units can be approximated with 
continuous lines of contour length of measure N and the 
model described by means of equation (4) and (5) is 
equivalent to the continuous model introduced some time 
ago by Edwards 13. Summations over the units of the 
chains appearing in the evaluation of the diagrams of 
perturbation theory are equivalent to integrations over 
the contour lengths of the chains, which are easier to 
handle. The only problem in this simplification arises 
from the vanishing loops, the lengths of which according 
to equation (14) appear in the denominator and produce 
infinities in the limit of zero lengths. This is an artifact of 
the continuous line approximation and it does not change 
the long-chain character of the chains. It does not cause 
any real trouble because the infinities can be isolated and 
ignored (see Appendix). 

Previous studies14 have shown that the dimensionality 
d of the space plays a dominant role in the behaviour of 
chains. On increasing d the effects from two-body 
interactions diminish and d = 4 is a critical dimensionality 
above which such effects cease to exist. The study at d = 4 
is the easiest possible and though d = 4  is a fictitious 
dimensionality it helps in understanding the behaviour of 
chains at the real dimensionalities d=3,  2 or 1. The 
connection between the dimensionality 4 and the rest of 
the dimensionalities d is done via the parameter e = 4 - d ,  
which in this analysis is treated as a small quantity. By 
means of one-loop perturbation theory, we can determine 
both the structure of the second virial coefficient in the 
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limit of large molecular weights and the differences due to 
the various architectures, more evident in the range of 
intermediate molecular weights. 

In the next section the general formalism for the 
evaluation of A2 is given, while in the subsequent section 
the results for the various architectures are discussed. 
Finally an Appendix follows where the evaluation of the 
diagrams is explained. Throughout the paper N stands for 
the total number of segments of the chain while M = Npo, 
with Po the molecular weight of a segment, stands for the 
total molecular weight of the chain. 

EVALUATION OF A 2 

A 2 is a property of two chains and 
volume/(mass) 2 it can be expressed as 3'' s: 

in units of 

VNA (C 2 - Cl 2) 
A 2 = 2M 2 C21 (6) 

where V is the volume of the system, N A is Avogadro's 
number and M is the molecular weight of the chain in 
units of mass. C, is the configurational partition function 
of a single chain and is the sum of the probabilities of all 
possible configurations. It can be defined in terms of the 
probability of a single chain, equation (4), as 

PN + 1 

C 2 is the configurational partition function of the system 
of two chains defined in terms of the probability of two 
chains, equation (5), as 

f Ni~i 1 N + 1 
C 2 ddR, FI d R.P{R,,R.} (8) 

J i = l  j = l  

To evaluate C 2 from this equation, P{Ri,R) } is substituted 
from equation (5). In the resulting expression the third 
exponential factor is approximated with its expansion 
form up to the square term in the interexcluded-volume 
parameter u'. The result is 

/ ~ N + I  N + I  
d d , , C 2 = I FI d R i ~ d R .Po~Ri, R .~ | 1 I - I I ~ ]  t ~  ~ 3 .  ~ 

J i = l  j = l  

/ N + I N + I  N + I N + I  
d , , ] exp[-u' E E ad(R-,-R-}) -ul ~, E (3 (R,-Rj) / \ i = 1  j = l  i = 1  j = l  

i # j  i # j  i ¢ j  i # j  

1-2u'Z Z 6n(R-,-R-)) +2u'2/s+'~v+' Z a'(R,-R9 
i = l  j : l  \ i = ]  j = l  

(9) 
The first term in the expansion represents the product 
from two independent chains and it is equal to C~. The 
second u' term represents two chains intersected at their 
ith and j th points due to the action of the 6d(Ri -R) )  
function. It can be written as 

t ' 
- 2u  _A__  

w h e r e  
,, 

represents the two intersected chains. The full lines 
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represent the chains while the broken line represents the 
delta function which brings them in contact. The point of 
intersection runs through all the positions of the two 
chains so that the double summation of the term is 
produced. The third u '2 term represents two chains 
intersected at two different points due to the action of the 
two delta functions. It is equal to 

2U '2 ] 1 
I I 

and again the points of intersection of the two chain runs 
through all the positions of the chains so that the four 
summations of the term are produced. By means of these 
diagrammatic expressions, equation (9) becomes 

C 2  = 2 p----r--- i i C 1 - 2 u _  ,, .+2U '2,, ', (10) 

so that A2,  equation (6), takes the form 

A2--u'(NAV/M2C2)(~', -u' '-~--[ I (11) 
/ 

In the first-order diagram 

the single point of intersection does not change the 
intrachain character so that each chain produces a C~ 
factor. The difference from the case of two independent 
chains is that the two intersected chains move together in 
all available space of volume V so that a factor V less is 
produced and appears in the denominator of the 
expression of the diagram. If we approximate the double 
summation with a double integration in the limit of large 
N, the diagram becomes equal to 

N N 

=,c jv)f 6 4  :c N2jV 
0 0 

(12) 

The second-order diagram 

can be found straightforwardly. For its evaluation four 
length variables are needed: two i~j1 on the first and two 
i2J2 on the second chain. The form of the diagram 
depends on the architecture of the chain. In an abstract 
form it can be written as 

'', gfdifdjfdifdj(d/2l gth p)d/2 , = n x l e n  o f l o o  1 I 1 1 2 2 

N N N N 

(15) 

where the length of the loop formed by the two points of 
intersection, the one at the points ix of the first and i 2 of the 
second chain and the second at the pointsjx of the first and 
J2 of the second chain, varies as the four length variables 
run throughout all the contour lengths of the chains. In 
the easiest case of linear polymers, equation (15) takes the 
form 

,' ,' = V(d/2n12)a/24. ~ {  
1 i 

with 
N N N N 

=f d, f 646, 4 
0 i I 0 i 2 

linear chains (16) 

The number 4 is a symmetry number and comes from the 
fact that the cases of j l  > il (J2 ~ i2) andjx < ix ( ]2  ~ ( i 2 )  yield 
identical results. For the cases of complex architecture this 
dependence is more complicated. In the case of rings, 
equation (15) takes the form 

' '  ( ~ )  ,' 'j = V(d/2nlZ)a/24 

with 

N N N N 

=fdilf djlfdi=f d j 2 1 / [ N ( j l - i l ) ( N - j l - J r - i l )  

0 i, 0 i 2 

+ N(j2 - i2)( N -J2 + i2 )]d/2 rings (17) 

I I 
I I 
I I 

has a / , / , 2  prefactor and since the overall calculation is up 
to the second order in u' its value has to be found only up 
to zeroth u '° order. This is the case of ideal chains for 
which C1 -- V for an open chain and C1 = V/N a/2 for a 
chain forming a ring. The two points of intersection of the 
diagram form a loop which determines the form of the 
diagram. Since the probability of a part of a chain or 
intersected chains of length Npl having its two ends at the 
points R 1 and g 2 is 

P(R,,R 2 ;Npl)= (d/2nNplZ)a/Zexp[ - d(R 2 - R, )2/2Np12] 
(13) 

the probability of a loop of length Npl for which R~ = R 2 is 
equal to 

where the form of the diagram 

has been taken from ref. 16. It is equal to 
1/(111213 + 111214 + lx 1314 + 121314) a/2 where 1~, 12, 13 and 14 are 
the four lengths joined at the two points. For  rings 
l l + 1 2 = N  and 13+14=N so that the simple form 
1/[Nl  I (N - ll) + Nl2(N -/2)] a/2 is obtained. In the case of 
regular stars of f equal branches, three different diagrams 
can appear where different numbers of branches from the 
two chains intersect. When there are two intersected 
branches the form of the diagram is 

When there are three the diagram takes the form 

P(R 1 = R 2 ;Npl) = (d/2nNpl 2)d/2 (14) 

After this the value of the second-order diagram 
i i 
i I 
I I 

and when there are four the form 
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When the four length indices it,Jr, i 2 and j2 of equation with 
(15), measured from the centre of the star, run over all the 
contour lengths of the two chains, 4f  2 of the first diagram Nbb Nbb 
arepr°duced, 4f2(f-1)°f thesec°ndandf2(f-1) 20fthe ~ Z 2 ~ = f d i t f  
third, so that for stars equation (15) takes the form 

0 i t 

= V(d/21r12)a/2(4f 2 uO ( + 4 f z ( f  - I )  

+f2(f-1)  2 ~ )  

with 

Nbr Nbr Nbr Nbr 

"b< =f di,f dS,f di f d j21 / ( l ' a - i , + j2 - i 2 )  a/2 
0 i I 0 i 2 

Nbr Nbr Nbr Nbr 

-~=f di,f djif di2f d j 2 1 / ( j l - i l + J 2 + i 2 )  d/2 

0 i x 0 0 

(18) 

Nbr Nbr Nbr Nbr 

=f di, f djaf d6f d j 2 1 / ( j l + i l + j 2 + i 2 )  a/2 

0 0 0 0 

Nbr = N/f regular stars 

where Nbr is the branch contour length and N the total 
contour length of the macromolecule. In the case of 
regular combs (Figure 1) made from fequa l  branches of 
length Nbr built at equal distances on a backbone of length 
Nbb the points of intersection of the two chains may be 
either on the backbones of the two chains or on the 
branches. If we use full lines for the backbones and broken 
lines for the branches, equation (15) takes the form 

. ( l r ~ _ I I I = V(d/2M2)d/2 4 ~ + 4 .~- >, + 8 ~ + 8/.Af, 

+8 ..~" +4  I ', +4 , , +4 ><~.. +44_.2, 

\ 
x(" 'x ~ ] + 
e x ,,"x / 

f 

I 
I 
I 

N b r /  I 
I 
I 
I 

ol 1Vbb I 
Figure 1 A regular comb polymer with f branches. Nbbl and Nbrl are 
the contour lengths, proportional to the molecular weights of the 
backbone and the branch respectively, a = Nbb/(f+ 1), p = Nbr/Nbb 

f 
t _  I 

i = t  

= i =  

Nbb Nbb 

dj l f  di2f d j21 /q l - i  1 + j 2 - - i 2 )  d/2 

0 J2 

Nbr Nbr Nbr Nbr 

jZ--lf d i l l  dj l f  di2; dj21/(jl-il+J2-i2)a/2 
0 i~ 0 i2 

Nbb Nbb Nbr Nbr 

f di,f djlfdizf d j21 / ( j l - i t+ j2 - i2 )  a/2 

0 i t 0 
i2 

Nbb Nbb Nbr /a 

..~ =2i~=1 f dill djlf di2f dj21/(jl-il+J2+i2) a/2 
0 i~ 0 0 

Nbr Nbr Nbr /a 

  ffff < ~ . = 2 ~  ~ dil djl di2 dj21/(jl-il+J2+i2) d/2 
i = l j = l  

0 il 0 0 

Nbb Nbb Nbr Nbr 

  ffff I I "= "= 

i ~ j  i C j  0 il 0 0 

× 1/(l J -  ila +Jl --ix +J2 + i2) a/z 

f 
=Z 

I I i = l  

Nbr Nbr Nbr Nbr 

j~=lk~tf dill dAf d%f dj2 
j # k  j # k  0 il 0 0 

× 11([i- kla +j, -- i, +J2 + i2) a/2 

f 

i = 1  

Nbr /a Nbr ja  

 ffff dil djl di2 d j21 / ( j l+ i l+J2 - [ - i 2 )  a/2 
j = l  

0 0 0 0 

Nbr /a Nbr Nbr 

= 2 ~  ~ ~ ,  di~ dj, di2 dj21/(lj-kFa+jl 
i = l j = l k  = 

j ~ k  j C k  0 0 0 0 

+ il +J2 + i2)a/2 

Nbr Nbr Nbr Nbr 

"( " = ~  ~ ~, ?1 di, dj, di 2 dj2 
i=  1 j =  1 k = I=  
i ~ j  i # j  k # l  k ~ l  0 0 0 0 

x 1/(~-ila+ll-kla+jt +i, +J2 +i2) a/2 

regular combs (19) 

In the definitions of the comb diagrams the summations 
over the f branches are included and ia, a = Nbb/(f-F 1) 
being the distance between the branches, denotes the 
position of the branches on the backbone. The finite 
values of the diagrams for all architectures are given in 
Table 1 and a demonstration of their evaluation is given in 
the Appendix. 
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Table I The values for d = 4 of the first-order diagrams for the various 
architectures 

Linear 

~ ) {  = N  2 ( l n N - 2 1 n 2 - ½ )  

Ring 

~ = N - 2 ( l n N + ½ 1 n 2 )  

Star 

(x 
C o m b  

I "< -- ~1 

= N~r(ln Nbr -- 2 In 2 -- ½) 

=N~r(8 In 2 - ~  In 3) 

= N~r(18 In 3 - 2 8  In 2) 

= Ngb(ln Nbb -- 2 In 2 --½) 

=./'2Ngr(ln N b r -  2 In 2--½) 

= f [ N b b F  o (Nbr) + ½F~ (Nbr ) -  ½F 1 (Nbb + Nbr ) + NbrFo(Nbb ) 

1 l + gF l (Nbb) -- 5NbbNbr] 

. i f '  = - l 'F~ (Nbr) -- 2NbbfFo (Nbr) +.['FI(Nbb + Nbr) - . f F  l (Nbb) 

f 

+ ~. [2NbbFo (Nbr 4- ia) -- 2NbbFo(ia ) -- F 2 (ia) + F 2 (Nbb 4- ia)] 

,U I 
/ ' ,  =f~ .[ -F3( ia)+2NbrFo(Nbr- t - ia) - -2NbrFo( ia)4-4Ngrln2]  

i = 1  

I I f 

, = ~(] - - i )~ t - -F3(Nbb+ia)+F2( ia)+2Nbb[Fo(2Nbr4- ia)  I I 
i l  

- 2Fo(Nbr + ia) 4- Fo(ia)]*j 

_ L  _ L  f 

' ' =.l'~. ( f - - i ) {F4( ia)+2Nbr[Fo(2Nbr+ia)- -2Fo(Nbr+ia)  I 1 
i = 1  

+ Fo(ia)]~ 

:~-.~ = - 4 f  2 F o Nbr ) -  8fZN~rln 2 -  2rE a (Nbb) 

f 
+ 2 ~. [(21"-- i+ l tFa( ia) -  ( f - -  i)F3(Ubb 4- ia)] 

i = 1  

f 
. ~  =.f(.l~-l)F~.(Ubb) + ~ . [ ( - - 2 f 2 + 4 f i - i 2 - 2 f + i ) F ~ . ( i a )  

i = 1  

+ ( f -  i ) (J ' -  i -  1)F 4 (Nbb 4- ia)] 

f \ ( "  x\ z 
/ , z" = --f2//3 4- f2 _ _  2f/3)F s (Nbb) 4- ~. { ( -  2 f  2 + 2fi 2 -- i3/3 4- 2fl 

i = 1  

- 21i + i/3)F5 (ia) + ~[ - ( f -  i) 3 + 12f2 _ 6fi + 3i 2 

- 211'- i )] f5(gbb 4- ia) 1 

where 

Fo(x) = x lnx F 1 (x )=  x 2 In x 

F 2(x) = x 2 In x -  (x + Nbrl21n(x + Nbr ) 

F3{x)= x21n x - 2(x + Nbr) 21n(x + Nbr } 

+ ( X +  2Nbr)21n(x + 2Nbr ) 

FAx}  = x q n  x -  3(x + Nbr) 2 In(x + Nbr ) 

+ 3(X + 2Nbr) z ln(x + 2Nhr) -- (x 4- 3Nbr)Xln(x + 3Nbr ) 

F5 ( x ) =  xXln x - 4(x + Nbr) 21n(x + Nbr ) 4-6(X 4- 2Nbr) 21n(x + 2Nbr ) 

-- 4(x + 3Nbr}21n(x + 3Nbrl + (X + 4Nbr) 21n(x + 4Nbr ) 

RESULTS AND DISCUSSION 

Linear polymers 

By means of the values of the integrals of Table 1 and 
equations (11), (12) and (16), the dependence of the second 
virial coefficient A2L of linear chains, on the molecular 
weight M of the chain and the interaction parameter u' is 
found as: 

AZL = (U'NA/p2)[1 -- 4u(ln N + FL)] N = M/Ito 

u = U' (d/2rtl 2)d/2 

F L =  - 2 I n  2 - ½ =  -1 .89  d = 4  (20) 

Here Po, in units of mass, is the molecular weight of the 
segment, u is a dimensionless excluded-volume parameter 
and N, being proportional to the molecular weight and 
the contour length of the chain, stands for the number of 
segments of the chain. FL is a pure number and in the limit 
of large molecular weights it is negligible with respect to 
l n N  so that it can be ignored, while in the limit of 
intermediate chains it is comparable to ln N and 
characterizes the linear chains. Calculations up to u 3 have 
been done previously 3 for the limit N---~oo, according to 
which AZL can be written as: 

A2L -~ (u'Na/12~)(1 -- 4u In N + 24u 2 In 2 N) (21) 

As we have shown for the case of the partition function of 
a chain 1~ the series of u In N in parentheses is of the 
general form (1 +au In N) b. The parameters a and b have 
been determined from the first two terms of the series and 
their values were consistent with the third-order term. 
Similarly in the expansion (21) a and b can be determined 
from the coefficients of uln N and u 2 lnZN terms as 
ab= - 4 ,  b ( b - 1 ) a 2 / 2 = 2 4 = ~ a = 8  and b = - ½ ,  giving for 
A2L the closed form 

A 2 L = ( U ' N A / g 2 ) ( I + 8 u l n N )  -1 /2  d = 4  N--*~  
(22) 

Previous studies at d=317'18 found that A2L is 
proportional to a function F 1 (z) where the parameter z is 
defined as z = 2 u N  ~/2. The solution as a function of 
dimensionality d shows that z can be defined in any 
dimensionality as z =  (2u/e)(N ':/2- 1), e , = 4 - d ,  which of 
course for d = 3  (e= 1) and N---.oo is equal to the three- 
dimensional expression. For e----~0, z--~u In N and this is 
the parameter  which appears in equation (22). The 
classical function Fl ( z  ) has an asymptot ic  expansion 
giving information only for small z. Because it is 
proportional to N 1/2, a large number, z is small only for u 
close to zero so that the study at d = 3 cannot describe AZL 
far from the 0 point. The situation becomes better as we 
increase d since the dependence ofz on N becomes weaker. 
The best situation is at the critical dimensionality d = 4  
where z = u In N obtains the smallest possible values for 
the same molecular weight permitting the study for larger 
u values. This is the reason for the success in the 
determination of the closed form, equation (22), from the 
first few terms of perturbation theory. 

Equation (22) provides the analytic dependence of A2L 
on the molecular weight M = N p o  and the excluded- 
volume parameter u and by means ofit a study over a wide 
range of conditions can be done. Though it is valid for 
d = 4 it permits the derivation of conclusions for smaller 
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dimensionalities d = 4 - e via the limit ~ 6 
lnN=(2/e)(N"/2-1)  as e-*O. It is consistent with 
experiments and it predicts correctly the form and the 
critical exponent of A2L in the limit of large molecular 
weights. In the good solvent region, where u' is positive, the 
increase of u' by increasing the temperature or the quality 
of the solvent causes A2L to increase sharply initially and 
gradually for larger values ofu'  (ref. 19). On increasing the 
molecular weight of the chain the second virial coefficient 
decreases 4'6'2° and in the good solvent region and the 
limit of large molecular weights this dependence becomes 
a power law 4'5 of the form A2L "~ M-L This behaviour is 
explained by means of equation (22) and an evaluation of 7 
up to order e is provided. Indeed for large molecular 
weights and u positive the second term of equation (22) is 
more dominant over the first and since In N = (2~ON ':/2 the 
second virial coefficient becomes 

A2 L = (u,Na/#~)[(16u/e)N~,/2] -1/2 ~ N - , : / 4  , ~  M -~/4 

and 7 = e/4 in agreement with other theories 5'21. The same 
exponent can also be determined from first-order 
perturbation theory, equation (20), using the fixed point 
value 14 u*=~/16. At this point 
A2L~exp(--4u* In N ) = N  -'/4, yielding the same critical 
exponent. For  d = 3 (e = l) the value of the exponent is 0.25 
and though calculations to higher order in e would yield 
better estimates ely it is interesting to notice that the value 
of 7 = e/4 is a limit for N---,oo. For N finite 

Az L = (U, N A/#2)[1 + (16u/e )N,,/2] - 1/2 

so that 

7 = - d  In A2/d In N = (e/4){ 1 - 1/[1 + (16uN~/2/O]} 

is smaller and closer to the value 0.20 found recently for 
the system of polystyrene in toluene 2°. 

Rin9 polymers 
The value of the diagram 

(E) 
(Table 1) is obtained by means of the integrals of Table 1. 
Using this value in equations (17) and (11) we obtain for 
ring polymers the expression 

A2, = (u'N,/#2)[ l - 4u(ln N + F,)]  

with FR = In 2/2 = 0.35 d = 4 (23) 

For  large molecular weights FR is negligible with respect 
to In N and the second virial coefficient for a ring 
approaches that of a linear chain. As we will see this 
applies to all architectures and admits a physical 
interpretation. The effect of the architecture on the chains 
is of local character so that in the limit of huge molecular 
weights, N---.oo, it disappears from the macroscopic 
properties of t he chain. This result goes beyond t he results 
of first-order classical perturbation theory at d=3 ,  
according to which different coefficients for the first-order 
z terms are found for polymers of different 
architectures 22'23 and the above limiting behaviour 
cannot be seen. 

and A. M. Kosmas 

For smaller chains, where the function FR is comparable 
to In N, equation (23) permits comparison between ring 
and linear chains of the same molecular weight. 
FR > FL SO that A2R < A2L in agreement with experimental 
findings 7,s. 

Regular star polymers 
In the case of regular stars of f branches 21, use of the 

integrals of Table 1 in equations (18) and (11) yields the 
expression 

A2s = (u'Ng/p2)[1 -- 4u(ln N + Fs) ] 

with 

Fs = - 2 In 2 - ½ -  l n f +  ( -  7f 2 + 2 2 f -  15)ln 2 

+(9f2 _ ~ z f +  9)ln 3 d = 4  (24) 

The overall form of A2s is the same as that of previous 
architectures and again for ln N>>Fs the behaviour of 
linear chains is recovered. The difference is that F s 
depends on the number of branches, f Some characteristic 
values are: for f =  1, 2, Fs = FL = -- 1.89; the case of linear 
chain is taken as expected. For  f =  5, Fs = 0.38; for f =  10, 
Fs = 8.65; for f =  20, Fs = 39.65; and for f =  30, Fs = 89.30. 
See also Figures 2 and 3 where the F values of various 
architectures are compared. We see that F s increases with 
f and it can reach very large values. The larger is Fs, the 
larger are the molecular weights needed to reach linear 
chain behaviour. This property, like that of the mean 
square radius of gyration of stars 24, expresses the 
influence of the core, which is larger for larger number of 
branches 9. 

For stars of the same molecular weight the second virial 
coefficient according to equation (24) becomes smaller a s f  
increases, in agreement with experiment 9'12 

Regular comb polymers 
Regular combs (Figure 1) consist of a backbone of 

length Nbb and f branches of length Nbr each equally 
distanced along the length of the backbone. In this case 
the architecture is more complicated and three 
parameters are needed for its description. For a better 

f=6  

_F R f=5 

f=4  

, 

t'=3 

F~ 
-z  :7~2- -TT --v- 

- m  -3 -2 -I 0 I 2 3 +Qo 
log p 

Figure 2 The function F c for regular combs o f f < 7  as a function o f  
log p. The corresponding F values o f  linear, r ing and regular star chains 
are also shown 
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~ 5  [ I [ I I 
-oo -2  -I 0 I 2 

log p 

f =  50 

f= 40  

m - -  

f = 3 0  

f : 2 0  

f=10 

I I ~ 5 - -  
3 4 + ~  

Figure 3 Fc for regular combs of various f >  6 as a function of log p. 
For larger f the transition from linear to star behaviour becomes 
sharper 

comparison with the other types of chain the three 
parameters are chosen to be: (a) the number fo f  branches, 
(b) the contour length of the chain, N = N b b + f N b ,  
proportional to the molecular weight of the polymer and 
(c) the ratio p = Nbr/Nbb of the molecular weights of the 
branch and the backbone. As p---~0 the linear chain is 
obtained while for p - - -~  the regular star is recovered. 

Following the same route as in the previous cases we 
obtain for the comb an expression of the same structure: 

A2c=(U 'NA/Vg)E1-4u ( lnN+Fc) ]  d = 4  (25) 

Again for large N, in the region where In N is dominant 
over F o  linear chain behaviour results. For  smaller 
chains, Fc determines the value of A2c and larger values of 
F c mean smaller values of A2o The difference now is that 
Fc describes a complex architecture and is more 
complicated. It depends on both p and f Generally the 
effects from four different branches have to be considered 
so that the expression of F c includes summations over 
four different indices as the diagrams of equation (19) 
indicate. These summations have been converted into a 
simple summation over one index. Owing to the 
simplicity of the problem at d = 4 compared with that at 
d=  325, a final expression results with 

Fc = - ln(1 +fp)  - ½ + [1/4(1 +fp)2] { _ 8(1 +f2p2)ln2 

- 4f(3f+ 1)p21n p - 8fp In p 

+_~f(f2 _ 12f+ 26)(1 + p)21n(1 + p) 

- 2 f ( f  z - 9 f +  12)(1 + 2p) 2 ln(1 + 2p) 

+ ~ f ( f 2  _ 6f+ 5)(1 + 3p)21n(1 + 3p) 

f 
_ ½f ( f2  _ 3 f+  2)(1 + @)2 ln(1 + 4p) + ~ [( - x/3 

i=1  

- 2f 2 + 1 Of f -  4i 2 + 4 f -  ~i)i2,uZln (i/0 + (-~x + 4f 2 - 28fi + 12i a 

+ ~ i -  8)(i/~ + p)21n(i/~ + p) - (2x - 24fi + 12i 2 

+ 12f -  2 i -  8)(i/~ + 2p)21n(i# + 2p) + (-~x- 4fl 

- 4fi + 4i 2 + 8 f -~ i ) ( i / t  + 3p)21n(i/~ + 3p) 

- (x/3 - 2f 2 + 2 f i -  i/3)(i# + 4p)21n(i/~ + 4 p) 

- (y3/3 - 5y 2 +~Qy-- 8)(1 + i/021n(1 + i#) 

+ (_~y3_ 16y 2 + X~_y_ 8)(1 + i# + p)21n(1 + i/t + p) 

-- (2y 3 -- 18y 2 + 28y)(1 + i/t + 2p)21n(1 + i/~ + 2 p) 

+ (_~y3 _ 8y2 + ~Qy)(1 + i/t + 3p)21n(1 + i,u + 3p) 

_ (y3/3 _ y2 + 2y)(1 + i# + 4p)21n(1 + i# + 4p) 

+ 8(f2p --tip -- 2fp + f - -  i-- 2)i# ln(i/~) 

-- 16(/2p --tip --fp + f - -  i-- 1)(ip + p)ln(i/~ + p) 

+ 8(/2 --tip + f - -  i)(ilt + 2p)ln(i/~ + 2p)]} 

x =  6f2i - 6fi 2 + i 3 y = f -  i # = 1/(f+ 1) (26) 

Fc as a function of p and f describes regular comb 
polymers. Linear and star polymers can be considered as 
special cases of comb polymers in the limits of p--+0 and 
p---+oo respectively. Indeed Fc tends to F L for p--+0 and to 
F s for p-+oo. Another check on the validity of equation 
(26) can be made for the case ofp =½ and f =  1 where Fc of 
a comb with one branch does go to Fs of a star with f =  3. 
Equation (26) permits the study of F c as a function of p 
and f Using a small routine, the values of Fc have been 
found for a large range of p and for 11 representative f 
values and the results are plotted in Figures 2 and 3. For 
small p, less than 10 -3 ,  the linear chain behaviour is 
obtained, while for p larger than 10 2, the star behaviour is 
produced. For  f<~5 a maximum in Fc appears (a 
minimum in A2c) 25 which moves to larger values o fp  a s f  
increases. For  f > 5  the maximum disappears and a 
smooth change from linear to star behaviour occurs 
which becomes sharper as the number f of branches 
increases. 

CONCLUSIONS 

The osmotic pressure second virial coefficients A 2 of 
homopolymers of various architectures have been studied 
in a perturbation theory scheme. A function F is found 
which characterizes each architecture and determines the 
value of A 2. Analytic expressions of F for the architectures 
considered are given which allow the comparison of 
second virial coefficients of polymers of the same 
molecular weight but of different architectures. The 
second virial coefficients of linear chains have the largest 
values and then stars wi[h number of branches f = 3 , 4  
follow. The second virial coefficients of ring polymers are 
close to those of stars with f =  5. Smaller values of A2 
follow for stars of larger values of f The second virial 
coefficients of combs depend on the ratio p = Nbr/Nbb of 
the molecular weight of the branch to that of the 
backbone and change from those of linear chains to those 
of star chains as p increases. For  number ofbranchesf~< 5 
a maximum in Fc (minimum in A2c) appears (Figure 2), 
moving to larger values of p for larger f For  f >  5, on 
increasing p a monotonic change from linear to star 
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behaviour takes place. This change becomes sharper as 
the number f o f  branches increases. 

In the limit of large molecular weights (M---*oe) the 
specific architecture is irrelevant and a closed form of A 2 
as a function of the molecular weight M and the excluded- 
volume parameter u valid for all polymers is proposed. 
Larger values of F require larger molecular weights to 
reach independence from the architecture, which means 
that for larger values of F the characteristics of the 
architecture are more persistent. 
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APPENDIX 

Evaluation of characteristic diagrams for d = 4 will be 
demonstrated. For the diagram 

defined in equation (16), we make the substitution 
J, - il---*11, i1---~il, J2 - i2---*12, i2---*i2 and after integrating 
over the ix and i2 variables it becomes: 

N N 

~Z)~= f dll f dl2(N-11,(N-12)/(ll +12) 2 (A.1) 

o o 

and A. M. Kosmas 

The 12 integration is done first so that 

N 

= I d l ,  [ (N2/ I , ) -N-N ln(N +l,)+l t ln (N+l  1) 
q d  

o 
+ N  In l, - l ,  In/t]  

= [N 2 In 11-½Nl, -Ni l  In(N+/ , )  

-3N2 ln(N + l, ) + ½l~ ln(N + ll ) + Nl, In l, 

- - l l  I In l It, =N (A.2) 1d/,=0 

As we have explained in the paper the singularity of the 
term N 2 In 11 in the limit 11---~0 can be ignored and the 
value of the diagram, quoted in Table 1, is taken from 
(A.2). 

A similar route is followed for the diagram 

(E) 
equation (17), of rings and the form 

N N 

=N--~ dll dl 2 (N-ll)(N-12) (A.3) 
I / I ( N -  + 12(N- 12)] 2 

0 0 

is obtained. The substitution N-ll--}11, N-12---}12 does 
not change the demoninator so that 

N N 

( ~ = ( 1 / N 2 ) f  dll f dl21112/[-12 +Nl2 +ll(N-l,)] 2 
o o 

(A.4) 

The l 2 integration is done first and we take 

N 
N 2 

@ = ( 1 / N 2 ) f  dlI[(N_I,)[N2 +4ll(N_I1)] 
o 

2N11 
[N 2 + 4/l (N - 11 )] 3/2 

[IN 2 +411(N-l,)] 1/2 + N~] 
x l n ~  +411(N_I,)],/2_N)j (a.5) 

The first integral is straightforward while the second one 
is done by parts. The final result is 

( ~ )  = [(1/2N 2 )In l, + (1/4N 2)(2l 1 + N)[N 2 + 4N(N 

-,/2 ln([  N2 +4N(N-I,)] '/2 + N'~] ''=N 
- 1, )] \ I N  2 + 4N(N - 1, )] ' /2 _ ~ - / ]  (A.6) 

l~ =N 

and its finite part is the value written in Table 1. 
The diagram 

-X-<- 

equation (18), of stars, after the substitution Jl-i,'--*11 
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takes the form The diagram 

Nbr 

0 

Nbr :f 
0 

Nbr Nbr 

dll ( N b r - - l l ) f  di2f dj21/(ll +i2 +J2)  2 

0 0 

(A.7) 

dl 1 ( N b , -  11 )[ -- ln(2Nb, + I1) + 21n(Nbr + 11 ) -- ln(ll )] 

,if, 
/ 

equation (19), of combs, has similar integrations and after 
their performance it becomes 

f 
. S '  = ~ {[(Nbb + Nbr + ia) z --  12]ln(Nbb + Nbr ~- i a - -  I, ) 

i = 1  

The substitution Nbr -- 11----~11 simplifies the integrals which 
are straightforward and give 

- - ~  = 1 [ (9N2 r - l 2)1n(3 Nbr - -  11 ) - -  2(4Nb2~ -- lZ~ ) ln(2Nbr -- 11 ) 
(A.8) 

+ (Nb2~ - 12 )ln(Nbr- 1, )]/]1~_ Nbr 

The value of 

is written in T a b l e  1. 
The diagram 

equation 
i2 and J2 

(18), of stars, after integrating over the variables 
takes the form 

Nbr Nbr 

= f  dil f d J J ' [ - l n ( 2 N b r + i x + j l )  

0 0 

-- [(Nbb + Nbr) 2 -- 12]in(Nbb + Nbr-- I,) 

- [(Nbb + ia) 2 - 12]ln(Nbb + ia - 11 ) 

+ (N2b- 12)ln(Nbb - l ,  )] } l: -- ~bb (A.11) 

which leads to the value in Tab le  1. 
The final demonstrat ion,  concerns the diagram 

I 
I I 

equation (19), of combs. The double  summation 

f f 
E E  

i = l j = l  i#j i¢j 
f 

can be converted into a single one as 2 ~ ( f -  i) so that the 
i = 1  

expression of the diagram after the i2 and j2 integrations 
and the substi tution J l -  i l - -~Nbc- -11  becomes 

+ 21n(Nbr + i I + J l )  -- ln(il +J l  )] 

Nbr 

0 

di l [  - (3Nbr + il )ln(3Nbr + il ) (A.9) 

Nbb 

)f [ , ,  l(f_ I 'L =2i  i d l l l l - - l n ( N b b + 2 N b r + i a - - l l )  

0 

+ 21n(Nbb + Nbr + ia --  I x ) --  ln(Nbb + ia --  l I )] 

+ 3(2Nb, + i x )ln(2Nbr + il )ln(2Nbr + il ) 

-- 3(Nbr + il )ln(Nbr + i 1 ) + illn(il )] 

f 
= ~ ( f -  i){ [(Nbb + 2Nbr + ia)  2 --  l~]ln(Nbb + 2Nb, + ia --  l ,  ) 

i = 1  

The final integration is straightforward and 
expression 

x~ =¼[ - 2(3Nbr + il )21n(3Nbr + it )+  6(2Ubr + il )2 

X ln(2Nbr + ix ) - 6(Nbr + il )21n(Nbr + il ) 

the 

- 2[(Nbb + Nbr + ia) 2 - -  l~]ln(Nbb + Nb, + ia --  l, ) 

+ [ ( N b b  + i a ) Z - - 1 2 ] l n ( N b b  +ia-- l l )}~;2Uobb (A.12) 

" 1 "  t '  ");2 lnt ;1  ~q il =Nbr + 
JJ  i~ = 0 (A.10) 

is obtained, with the value quoted in T a b l e  1. and the value in T a b l e  1 is obtained. 
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